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Understanding the links between structure and properties in materials is one of the most
central challenges for chemistry. Atomic-scale simulations based on density-functional theory
(DFT) have played important roles in this — but they are computationally expensive and can
describe structurally complex materials only in small model systems. Novel simulation
methods based on machine learning (ML) have recently attracted a lot of attention in
computational physics, chemistry, and materials science: by “learning” from reference DFT
data, they achieve similar accuracy but require only a small fraction of the cost.

In the first part of this talk, I will argue that ML-based interatomic potentials are
particularly useful for studying structurally complex materials, such as amorphous
(non-crystalline) solids. I will describe an ML potential for amorphous carbon [1] that was
built using the Gaussian Approximation Potential (GAP) framework [2], with a special view
on what is needed to create and validate ML potentials for the amorphous state. I will present
recent applications of GAP-ML models to porous and partly "graphitised" carbons that are
relevant for batteries and supercapacitors [3], and to amorphous silicon, where ML-driven
simulations allowed us to unlock long simulation times and accurate atomistic structures [4].
In the second part, I will point out possible directions for the automated exploration and
“learning” of solid-state potential-energy landscapes. We recently introduced an ML-driven
approach to inorganic crystal structure prediction, dubbed GAP-driven random structure
searching (GAP-RSS) [5]. This technique, iteratively exploring and fitting structural space,
allowed us to create to a flexible and accurate interatomic potential for elemental boron [5],
and more recently to develop a more general computational framework that can explore and
fit potential-energy surfaces for different materials [6]. These early results are hoped to enable
a more widespread use of ML-driven materials simulations in the years to come.
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2018, 120, 15600, [6] arXiv:1905.10407.
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